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The problem of compression of elastic bodies was formulated and solved 
by Hertz in 1882 [d. Hertz took into account only the first terms in 
the expansion of the equations of the contact surfaces of the bodies and 
neglected friction, and therefore he was able to use the apparatus of 
the theory of Newtonian potential which was developed at that time. In 
particular, a complete analogy was shown to exist between the contact 
problem of two elastic bodies and the problem of the gravitational field 
of a homogeneous ellipsoid. 

Numerous publications were devoted during the ensuing years to the 

application and verification of Hertz’s results. 

Beliaev [21 calculated the values of the stresses inside the contact- 
ing bodies. 

Attempts to estimate the influences of friction forces on the contact 
stresses and on the relative displacements of contacting bodies were 
made by several authors. 

In the papers by Cattaneo [31 and Mindlin [4l the problem of the com- 
pression of bodies is solved which have like mechanical characteristics; 
in this case the pressure distribution, the size and the shape of the 
contacting surface turn out to be independent of the shear stresses. 
The problem of the determination of adhesion forces was thus ultimately 
reduced again to well known problems of potential theory. 

The problem of rolling of elastic bodies was considered with the same 

assumptions in [51. 
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Principally new problems, from the mathematical point of view, occur 

in the study of contact problems taking into account friction (or 

adhesion) in the case when the material properties are not alike. 

The first such problem under conditions of a plane state was formu- 

lated and solved by Abramov [61. 

The problem was formulated thus: to find the stress distribution 

(normal and shear) at the base of a plane, absolutely rigid die inter- 

acting with an elastic half-plane, if its base and the boundary of the 

semiplane exhibit no slip. Obviously, this is another limiting case: 

the adhesion forces are so large that they fully inhibit the slippage 

of the points on the boundary of the semiplane relative to the base of 

the die. 

In this case the boundary conditions of the mixed problem of the 

semiplane are as follows: outside the contact region the surface 

tractions are absent (or given), inside the contact region the compo- 

nents of the displacement vector are given. 

Later this problem was considered by Galin [71 and Muskhelishvili 

[81 i n a general manner. In another paper [91, Galin considered the 

problem when the contact area, aside from the region of adhesion, con- 

tains also regions of slippage. Friction in these regions was assumed 

to be linearly related to pressure (Coulomb’s law). 

The mixed problem of the theory of elasticity for a semi-space with 

a circular separation for boundary conditions was first formulated in a 

general manner and solved by the author in paper [lo]. By way of 

examples various cases of interaction of a plane circular die with 

elastic semispace were considered under conditions of no slip within 

the complete contact region. 

Somewhat later the same problem was investigated by a different 

method by Gfliand [ill . 

Below the following problem is considered (Fig. 1). We shall assume 

that, as the compressive force is gradually increased, the contact 

region increases also gradually. Let it be assumed that for a certain 

value of the force P the points A, and A2 of the bodies 1 and 2. re- 

spectively, enter into contact. As the compressive force is increased 

further, these points will be inside the contact region. We shall assume 

that the adhesion forces will not permit any relative displacement of 

the two points. 

We shall consider the contact of elastic bodies during the process 

of its development, assuming that the increase in the loading is suffi- 

ciently slow, such as to neglect the dynamics of the process. The state 
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of stress will then depend on the loading parameter. The problem is 
solved under conditions of axial symmetry. 

In Section 1 of the paper as an illustration to the solution of the 
proposed method, the known problem of the indentation of a smooth axi- 
symmetric die into an elastic half-space is considered. Section 2 con- 
tains the solution of the indentation into an elastic half-space of a 
rigid die under conditions of adhesion (limited ease of the formulated 
problem, when one of the contacting bodies is absolutely rigid). 

In Sections 3 and 4 the results of Section 2 are extended to the 
general case when the elastic constants of the contacting bodies are 
different. In Section 5 a specific example is considered, which concerns 

the compression of two rotational paraboloids. 

1. Let us consider the problem on the indentation of a smooth, abso- 

lutely rigid die into an elastic half-space (Fig. 1). Let z = CD(p) be 

the equation of the surface of the die, 

whereby NO> = 0. As a loading parameter 

which determines the stage of the state 

of stress, we take the radius of the 
contact area a. 

‘Ihe state of stress of the half-space 

in the absence of shear tractions on the 

boundary surface may be finally described 

by means of a single harmonic function 

9,(x, Yj z), and the stresses Q, on the 

boundary and displacements UJ are expressed by the formulas 

In the following, taking into account the dependence of ‘pJ on the 

parameter a, we shall designate it by q3(p, z, a). 

Let us consider two neighboring states, which correspond to the 

values of the parameter a and a + 6a. By virtue of the linearity of 
elasticity problems the difference in the states of stress will also be 

some state of stress. 

Let f(a) be the settlement of the center of the die. ‘Ihen the bound- 

ary conditions for the state of stress considered will be 

w (P, 0, a) = -- f (4 - Q, (PI fP <a @* (P, 0, a) = 0 @ > 4 

(W 

w (PC 0, a i- W = - f (a + aa) - @ (P) fP < = + w 

UL (p, 0, a + aa) = 0 (p > a -I- 84 
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Using (l.l), we obtain 

'PO (P* 0; 4 = - f@)--@(P) @<a), cps; (P, 0,4 = 0 

~~s(P,O,U+~U)=-_(U+~~)-- (p<a+ba) 

q,‘L (PC 0, a + 64 = 0 (p>a+W 

From (1.3), passing to the limit as'tia - 0, we have 

(P>4 

0.3) 

wa (PI 0, a) 
= -ff’4 (P<4, 

h13; (Pt 0, 4 

aa aa = 0 (p>a) (1.4) 

lhe derivative of a harmonic function is also a harmonic function. 

Conditions (1.4) are sufficient for the determination of a harmonic 

function [p3,(p, 2, a). Obviously, this function will be the solution of 

the problem of the indentation into an elastic half-space of a circular 
die with a smooth plane base by a depth f’(a). Thus, the expression is 
valid 

a(P”‘fa*’ Q) = f’ (a)c& (p, 2, a) 0.5) 

where ~,(p, 2, a) is a known function, corresponding to the solution of 
the problem on the indentation into an elastic half-space of a circular 
die by unit depth. From (1.5) it follows 

d 

Assuming z=O in equation (1.6) and taking into account condition 

(1.2), we obtain an integral equation for the 
known function f(a) 

-. 0 (PI = if (0 ho (P, 0, t) 
0 

On the boundary of the half-space q+,(p, z, 

fpO(P‘W = --1 @>Pf* % CP, 0, t) = 

‘Ihus, equation (1.7) takes on the form 
D 

-@(p) =\f(t)[-+- sin-* 

0 

determination of the un- 

+ 11 dt (1.7) 

t) takes on the values 

2 _- 
n 

da-’ $ @<PI 

Differentiating (1.8) with respect to p, we obtain 
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lhis is Abel's equation. Its solution is of the form 

and the following is valid 

& (P, 0, 0 = ?I-.- 
n I/P-p” (P<O, q;* (P, 034 = 0 (P>4 (1.W 

Using (1.6) we find 

After simple transformations, using (l.l), we obtain the known 
formula for the pressure under a die in the case when the pressures on 
its boundary are bounded cl21 

a 

ax (p, 0, a) = - E 
s 

ift 
4.6 (1 - va) )/c-p 

(1.12) 
P 

For the following we note that if f'(t) = P’, then e(p) =C,,,p". 

To find the value of the constant C, we use the known formula 

1 

5 x=--l (1 - r (4 I- c-9 x)P---1 dx = r ta + pj 

0 

(1.13) 

and after transformations 

In the case considered F = l/2, a = l/2 m + 1. Thus, with the aid of 

the substitution f'(t) = tm from (1.9) we obtain 

c r (‘/a) r f’la m + a 2 lli _ 
3z I- (‘12 m + 3) 

(1 A!&) 

In the general case, when CD'(p) iska polynomial 

@‘(PI = 2 &Pm 
n=:(j 
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the function f’(t) is also a polynomial 

k A 
f’(t) = 2 $9” 

m=o m 
(1.15) 

2. Let us consider now the indentation of an absolutely rigid die, 
with axial symmetry, into an elastic half-space. We shall assume that 
the adhesion between the surfaces of the die and the half-space is so 
large that slippage on the contact area is completely absent. The bound- 
ary points of the elastic half-space, which enter into a contact with 
the surface of the die, adhere to it and move together with the die, 
that is, parallel to the z-axis, during the further evolution of the 

process. Mathematically, this condition is expressed by the function of 
radial displacements u,(p, z, a) in the contact area being independent 
of the radius of the die a. 

lhs, the boundary conditions of the problem may be written in the 

form 

w (PC 0, 4 = - f (4 - @ (P)v UP (P, 0, 4 = F (P) (P <a) 

02 (PC 0, 4 = 0, Gr(P,O94 =o (P>O) 
(2.1) 

Using the general solution of the equations of the theory of elasti- 
city in the form of Trefftz, the state of stress for the half-space may 
be described with the aid of two harmonic functions. In the case of 
axial symmetry the relations (2.1) take on the form 

(2.2) 

‘pa (P, 0, a) = - f (4 - @ CP), (p4z (P, 0, a) = afy + F 
P 

(p <a) 

cpa*(P,O,a!-~acp;Z@,O,u)=o. ‘Ps(P,~,~)--Acp,(P,O,u)=O (a<p) 

Here 

A 2P + h 2 l-v 
=-z - 

P 2-h 

For a neighboring state with a radius of the area a + 6a, the rela- 
tions (2.2) take on the form 

‘pa (P, 0, c.2 + w = - f (a + 64 - 0 (P) 

cp*; (p, 0, a + 8u) = aq + J$ (P < a + 64 
(2.3) 

cpai (P, 0, a + 64 - +#*; Ip, 0, a + 8u) = 0 

‘Pa (P, 07 a + 64 - &, (P, 0, a + ha) = 0 (a + 6a<P) 

Just as in Section 1, we consider the difference of the state of 
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stress as 6a - 0; then we obtain 

ek+(P, 0, 4 
= - f’ (a), 

a& IP, 0, 4 
aa aa = 

0 (P<‘) 
(2.4) 

4; (p, 0. 4 i a(p,i (p, 0, a) -_ 
aa A aa = 

0, atop IP,, ,Q, a) _ A a94 (p, ?. a) 
aa .aa =O (a<P) 

Conditions (3.4) indicate that the state of stress in a half-space, 

described by the harmonic functions %3(p, z, a)/aa, a'pI(p, t,, a>/% 
corresponds to the symmetric indentation of a plane circular die into 

an elastic half-space under the conditions of adhesion [no slip] by a 

depth f'(a). 'lhus, the sought functions can be represented in the form 

acPr(P, 8. 4 
aa = f’ (4 930 (P, 27 4, av*$;Z' a) = f'(a)% (p, z, a) (2.5) 

where 930’ 940 are known functions [lOI, which correspond to the solu- 

tion of the problem of the indentation into an elastic half-space of a 

plane circular die by unit depth under conditions of adhesion 

(pa (P, 2, 4 = J f’ (0 ‘pa0 (P, z, t) dl (2.6) 

0 

a 

(PI (Ps 29 4 = s 
’ f’ (0 (~a, (P, 2, t) dt (2.7) 

0 

Setting z = 0 in equation (2.6) and considering (2.2), we obtain the 

integral equation 

- Q, (p) = if’ (t) @q,o (P, 0, t) + 13dt (2.8) 
0 

On the boundary of half-space the function ~~~(p, 0, t) takes on the 
values 

‘pa0 (P, 0, t) = i&‘sul; 
0 

,(s, 0, a && (2.9) 

where 

ul; (z, 0, 4 = - 4 (Z<l), U&0,2)=+- 4 + 4cos 8 1rlg 

@>Q (2.10) 

8 +llg - & ln (3-4v) 

Thus 
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cpso(P, 0, t) = - 1 (P<t) 

qao(p, 0, t)= - 1 + $'cos 
s ( 

fJln2-t 
x+t vdb > 

(p>t) (2.44) 

0 

Thus, the equation for the determination of the sought function f'(t) 

takes on the form 

- a)(P) = $1 f’ it) dt p;$g$ , x (z,t) = cos (&I~) (2.12) 
t 

Changing the order of integration in (2.12), we obtain 

(2.13) 

Now it becomes obvious that the discovered property of equation (1.9) 

is valid also for equation ( 

O(p) = dmpm+l, where 

2.13). Substituting f'(t) = t”, we find that 

co+ In +++)dt (2.14) 

Consequently, equation (2.13) may always be inverted whenever a(p) is 

a polynomial. 

'Ihe pressure at the base of the plane circular die with unit settle- 

ment is determined from the formula 

a02 (P, 0, t) = 
8&p(2p + A) vA=-T x(QP 

a-c (3P + A) )/pa (t2 - 2”) 
(P< 0 

002 (PI a 1) = 0 (P :> t) (2.1.5) 

Thus, the pressure in the general case of indentation of an abso- 

lutely rigid die with axial symmetry under the conditions of adhesion 

[ no slippage] is determined by the expression 

Qz (P, 0, a! = 
setL(2p+h) )/Al--l a \f’(t) tdtj xk W 

2-5 (3P + A) ( )/p'- s2(t2- 22) (2**6) 
P 

3. Let us consider the problem of compression of two bodies possess- 

ing axial symnetry. As is usual we shall assume that the contact area 

is small as compared to the linear dimensions of the contacting bodies 



638 V.I. jfossakovskii 

and we shall replace them by two half-spaces. In the sequel all quanti- 
ties pertaining to the "lower" half-space (z<,(o), will be indicated by 
subscript 1; quantities pertaining to the "upper" half-space, by sub- 
Script 2. 

As before, the radius of the contact area a will be taken as the 

parameter which determines various states of stress. 

Let the equations of the surfaces of undeformed half-spaces be, 

respectively 

z = @l (P), 2 = @a (P) (3.1) 

Ihe boundary conditions of the problem may be written in the form 

612 (PC 0. 4 = 02, (P, 0, 4, %ZP (Pq 0, a) = ~2ZP (P, 0, a) (O<P<oo) 

WI (PI 0, a) “-we (P. 0, a) = @, (P) - 04 (P) - f (a) (3.2) 

%r (Pt 0% ol - Fzr (P, 0, a) = F (P) (P < 4 

clz (p, 0, a) = 0, flZP (P, 0, a) = 0 (P > a) 

Comparing, as before, two infinitely close states and considering 
that F(p) does not depend on a, we find 

aw(p* ** a) - aW, (P 0, 4 
&a al - - f’ (4 

aulr (P, 0, 4 au,, (P. 0, a) 
- aa aa 0 = (P < 4 

aa,,@. 0, 4 
aa = 0, 

,aTlrz (P, 0, 4 
aa =*o @</fJ, (3.3) 

awl* (P, 0, a) as,, (6 0, 4 arlrz (P. 0. 4 ar’Lr, (P. 0, 4 

(3a = da * aa = aa 
iO<P<4 

‘Ihe boundary conditions (3.3) determine, within the accuracy of the 
factor f'(a), the following problem: two half-spaces are bonded on a 
circular area and then are displaced one with respect to the other along 
the normal to the boundary by a unit amount. If the quantities which de- 
termine the solution to this problem are given the indices 10 and 20 
for the lower and the upper semi-space, respectively, then the following 
relations are valid 

&I (P. 2, 4 am (13 2, 4 
aa = -1’ (a) wlo (P, z1 a), aa = - f’(a) Wto (P, 2, 4 

a@lz (PI 0, 4 (3.4) 
da = - f' (a) oloI (P, z, a) etc. 

or, after integration with respect to a 



Compression of elastic bodies 639 

w, (P, 2, 4 = - s f’(t) wlo (P, 2, 0 dt 
0 
a 

wa (P, 2, 4 = - s f’(t) w20 (P, 2, 8 aft 
0 

0 

%z (P. 2, a) = - s f’(t) @IO, (p* 2, 1) dt etc. 
0 

(3.5) 

The first two equations (3.5), together with (3.21, yield an integral 
equation for the determination of the sought function 

@)1 (P) - Q)a (P) = - i f * (0 ho (P, 6, t) - w20 (P, 0, t) - II dt (3.6) 
0 

4. Here we solve the auxiliary mixed problem, whose special case was 

formulated in Section 3: to determine the state of stress and deforma- 
tion of two half-spaces, occupying, respectively, the regions z <O 
(lower or first half-space) and z>O (upper or second half-space), if 
the conditions are prescribed 

where u(n, u), tr(x, y), W(X, y) are known functions. 

Further, we shall assume that outside the region S the surfaces are 

not subjected to any loads and that the stresses and displacements in 
both half-spaces are vanishing at infinity. Let it be assumed that on a 
portion of the boundary S of the elastic half-space z <<-0 the loads are 
applied 

UlZ (z, y, O)=N (2, y), 

‘fhe displacements 
[31 

Ll! (2, y, O)=L (z, y), 

of the boundary points 

rrzv (2, y, O)=M (z, Y) (4.2) 

are determined by formulas 

9, .I- Ulb Y: 0) = &\ +s - 4npl(~l+pl)\L~~as- 
S S 

hl s M &ds- 
1 

- 4Wl 61 + Pl) s s 
&In rds (4.3) 

4a.c 04 + ILlI s 
N 



640 V.I. Mossakovskii 

v1 (x, y, 0) = 2&s +ds- ‘I \M&ds- 
S 

wh(~lf CL11 s 

b 

s 

L a+ 1 

- 4Jwl (hl + r1) 
-- 
axay s 43c (Al + Pl) B 

N+lr ds 

w1 (x, y, 0) = 4,$i;yp1j \ qd,. ’ \ (LG+MT)ds 
S 

4n &I + h) s 

Here and in the following 

Formulas (4.3) are transformed to the form 

(4.4) 

(4.5) 

Analogous formulas are valid for the upper half-space with the differ- 

ence that the sign of the first integral has to be changed. 

Thus, we obtain 

(4.6) 

Al+ Aa N 1 1 - wl-wz= 43% --4n s r ----_I\ ($ +a+)Inrds 
S 

b-?-h s 

In the case of axial symnetry considered, the quantities entering 

into (4.6) determine completely the state of stress and deformation. 

Expression (4.6) may be considered asan integral equation for the 

determination of the quantities N, aL/dx + aM&. On the other hand, 

when these quantities are found, using formulas (4.6) one can find the 

values of the functions w1 - w2 outside S. 

For the elastic half-space z\<O with elastic constants A, cl, which 

are determined by the formulas 
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1 1 1 A+@ Al + $1 
RF=-- Al + PI GFG’ p (A+ P) = Pl (Al + Pll + k+ ah (4.7) 

Pa @a + PaI 

the integral equations of the mixed problem are equivalent to equations 
(4.6). ‘lhereby the force and geometric factors of both problems coincide 
on the boundary surface. 

Consequently, the solution of the problem in Section 3 is auto- 
matically extended to the general case of compression of elastic bodies, 
with the only difference that in place of elastic constants h and u we 
have to substitute their values from (4.7) into the formulas. 

5. As an 
sphere into 
slip1 . 

example we consider the indentation of an absolutely rigid 
an elastic half-plane under the conditions of adhesion [no 

Limiting ourselves in the expansion of the equation of the sphere of 
radius R by the first terms, as is usually done in such types of prob- 
lems, we obtain 

0 (P) = &Pa 

In accordance with (2.14) we obtain 

(5.1) 

We indicate below 
of Poisson’s ratio v 

v=o 

f’ (0 = -&-P (5.2) 

the values of the quantities d, for various values 

0.1 0.2 0.3 0.4 0.5 

dl = - 0.225 -0.234 -0.240 -0.244 -0.246 -0.250 

‘lhe total loading P, which produces a given settlement of 

using (2.16)) is found to be 
the die, 

Substituting the expression (5.2) for f’(t), and interchanging the 
order of integration, we obtain 

p= l66P(2p+A) vAa-1 atia ta 
(3~ + A) Rdl s s v/ta - 9 X ($9 t) (5.4) 

0 x 
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Changing the order of integration, we have 

P= 169~ (2~ + h) ‘)/A’--l a 
t 

(3~ + N Rdl s s 
tadt xb t) 

0 
ol/tl-ZI 

lhe inner integral 
vili and is equal to 

is easily evaluated by the method of Muskhelish- 

(5.5) 

Finally, the following expression for the total force P is obtained 

,p = 8nW (2~ + 4) (A* - 1) as 
3(31r+%)RdlA 
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